DR SIG wide-beam CT dosimetry working party

Aim

 To recommend a method of measuring CT dose on wide-beam scanners that is practical and accurate.

Methodology – AAPM 111

- (Dixon and Boone)
 - Short ionisation chamber
 - E_{tot} instead of DLP
 - D_{eq} instead of $CTDI_{vol}$
 - 1/3 + 2/3 becomes 1/2 + 1/2
 - May require longer phantoms

Methodology – IEC / IAEA

- Can use existing 100 mm chamber
- Can use existing Perspex phantoms
- Likely to be adopted by manufacturers as will become an international standard
- For beam widths 40 mm or less:
 - Measure in air as before
 - Measure in phantom as before

Methodology – IEC / IAEA

• For beam widths greater than 40 mm:

 $CTDI_{100,(N\times T)>40} = CTDI_{100,ref} \times \left(\frac{CTDI_{free-in-air,N\times T}}{CTDI_{free-in-air,ref}}\right)$

IEC test measurements

- Toshiba Aquilion One (160 mm beam)
 25.3 mGy using IEC method with two positions
 25.9 mGy using IEC method with three positions
- Siemens Definition AS (28.8 mm beam)
 22.4 mGy/100 mAs using usual method
 22.1 mGy/100 mAs using IEC method